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Abstract

Acoustical oscillations can induce a rotation of a turbine flow meter in the absence of main flow, which leads to

spurious counts. A simplified model is presented which explains the occurrence of spurious counts in the limit of very

thin turbine blades and high Strouhal numbers. The predicted threshold for the occurrence of spurious counts is

compared to experimentally obtained data at various gas pressures in the range from 1 to 8 bar. The simplified model

provides a reasonable prediction of the occurrence of spurious counts and can be used as an useful engineering tool in

the prediction of the occurrence of spurious counts.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Turbine flow meters are often used to measure volume gas flows in gas transport systems. These turbine flow meters

are placed in a measurement manifold, consisting of several runs. Flow pulsations in these manifolds affect the accuracy

of the flow turbine meters. The N.V. Nederlandse Gasunie (the Dutch gas authority) discovered that these pulsations

not only affect turbine meters in open pipes, but can also incidentally cause spurious counts in turbine meters placed in

a closed side branch in which there is no main flow. These spurious counts start above a certain critical pulsation level.

Spurious counts that occur in open pipes, where a mean flow velocity is present has been studied by several authors

(Cheesewright et al., 1996; McKee, 1992; Grenier, 1991; Dijstelbergen, 1966). The aim of the research is to obtain a

better understanding of spurious counts under conditions for which there is no main flow. A simplified theoretical

model is presented which explains the occurrence of these spurious counts in the limit of very thin turbine blades. The

predicted threshold for the occurrence of spurious counts is compared to experimental data at various gas pressures in

the range from 1 to 8 bar.

2. Theory

The spurious count behavior of a turbine meter can be explained by considering the forces acting on an aerofoil in an

oscillating flow. The blades of the turbine rotor used in these gas transport systems have a rounded leading edge and a

sharp trailing edge (see Fig. 1). This asymmetry causes the rotation.
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In our model it is assumed that there is only flow separation around the sharp trailing edge of the blade. The flow

separation at the sharp edge in an oscillating flow can be seen in schlieren visualizations (see Fig. 2).

Centrifugal forces in a potential flow around the edge of a plate cause a low pressure at the wall, which results in a

force directed along the plate, which will be called the edge force. The vortex shedding reduces this edge force at the
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Fig. 1. Blades of the rotor.

Fig. 2. Schlieren visualizations of the flow separation at the sharp edge at a Strouhal number, Sr ¼ Oð1Þ:
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sharp edge, while at the rounded edge it remains present. This leads to a net force on the blade. This force brings about

a torque on the rotor. Spurious counts start when this torque is large enough to compensate the torque of the static

friction forces.

This analysis is restricted to the case of a harmonic acoustical oscillation with frequency f (Hz) and amplitude Uac

(m s�1) of the particle velocity: u0 ¼ Uac cosð2pftÞ: Furthermore, the turbine is considered under the condition that it

does not yet rotate, so that the blades have a fixed position.

Important dimensionless numbers for this problem are the Helmholtz number, He ¼ fd=c; the Strouhal number,

Sr ¼ fd=Uac; the Reynolds number, Re ¼ Uacd=n and the ratio, d=L; of the thickness, d ; of the blade compared with the
length, L; n is the kinematic velocity (m2 s�1) and c the propagation speed of sound waves (m s�1).

It is assumed that the viscous layer can be considered as a thin boundary layer (Re >> 1). Hence, the flow around a

blade of the turbine meter can be described with boundary layer theory in combination with potential flow theory. The

flow is assumed to be locally incompressible, because the rotor is small compared to the acoustical wave length and the

amplitude, Uac; is small compared to the speed of sound (Heoo1 and M ¼ Uac=coo1). The Strouhal number, Srd

gives an indication of the blade thickness compared to the acoustical displacement of particles.

If the product SrL ¼ SrdL=d is small, the blade thickness is small compared to the acoustical particle displacement

and the flow can be assumed to be quasi-steady. If the Strouhal number is of order unity, Srd ¼ Oð1Þ with d=Loo1;
local vortex shedding occurs. Finally, if the Strouhal number is much larger than unity, Srd >> 1; vortex shedding is

negligible except for the case when d=Looo1: This is illustrated in Fig. 3.

The ratio, d=L; of the thickness of the blade compared to the length, is small, d=L ¼ Oð10�1Þ: In this theory, the blade
is modelled as a flat plate. The flow separation at the sharp edge is modelled by means of a single-point vortex and by

applying the Kutta condition at the sharp edge (also called Kutta–Joukowski condition). This corresponds to the model

of Brown and Michael (1954) for flow separation at the edge of a delta wing. The force on the blade is found by

integration of the pressure along the plate. The singular flow around the sharp leading edge results in a finite so-called

edge force which is the result of an infinite low pressure applied on a zero surface (Milne-Thomson, 1952). A second

model is considered for the limit case, where the Strouhal number is very large, Srd >> 1: Here a potential flow is

considered without flow separation, but the contribution of the sharp trailing edge to the net hydrodynamic force on the

blade is removed. The idea is that the vortex shedding at this sharp edge has removed the local flow singularity without

affecting the global flow around the blade.

2.1. Theory for the case SrLðL=dÞ ¼ Oð1Þ

The theory for the case where the Strouhal number is order unity is considered first. In a point vortex model, the

vortex sheet generated by flow separation at the sharp edge is represented by a single-point vortex. The vortex is

assumed to be connected with the sharp edge of the plate by means of a feeding sheet. The circulation of the point

vortex is calculated by applying the Kutta condition at the sharp edge. The Kutta condition requires the velocity to be

finite at the sharp edge. In a real flow, this means that the flow leaves the edge tangentially, accounting for viscous

effects. In a point vortex model, this implies that at the edge a stagnation point is assumed. The point vortex moves with

the flow. Application of the Kutta condition implies then that the circulation changes with time. The convection
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Fig. 3. Influence of Strouhal number and blade length to thickness ratio L=d on the flow.
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velocity of the point vortex is calculated by means of potential flow theory. In this case a free vortex is assumed. This

assumption is in contradiction with the time dependence of the circulation of the vortex. This induces a spurious force

that will be neglected further (Rott, 1956). This error will appear not to be critical for our results.

The flow potential is calculated using a complex potential and conformal mapping. A circle with radius A; in the x-
plane, is transformed in a flat plate of length L ¼ 4A in the z-plane using the transformation of Joukowski:

z ¼ xþ
A2

x
; ð1Þ

where a is the incidence angle of the flow with respect to the blade (see Fig. 4).

The complex potential of the flow, F; in the transformed plane can now be written as

F ¼ Uacxe�ia þ
UacA2

x
eia �

iGv

2p
lnðx� xvÞ þ

iGv

2p
ln x�

A2xv

jxvj
2

� �
: ð2Þ

The first and the second terms on the right-hand side are the acoustic flow potential, after applying the Milne-

Thomson circle theorem (Milne-Thomson, 1952). The third and the fourth terms are the contributions of the vortex.

Here xv is the position of the vortex in the transformed plane and Gv the circulation of the vortex. The circulation of the

vortex is calculated using the Kutta condition:

dF
dx

����
x¼A

¼ 0: ð3Þ

At the first step the vortex is shed, the position of this vortex is calculated using the self-similar solution given by

Howe (1975) for an impulsively starting flow around a semi-infinite plate. The velocity of the vortex, Uv; is calculated in
the following steps using the following equation, assuming the vortex is a free vortex:

U�
v ¼
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dt
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Fig. 5. (a) Calculated path of a single point vortex and (b) calculated vortex strength for SrL ¼ 9:
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where zv is the position of the vortex, xv the position of the vortex in the transformed plane, the asterisk indicates the

complex conjugate, F the complex potential and Gv the circulation of the vortex. The last term is known as the Routh

correction (Clements, 1973). The new position of the vortex is calculated using a fourth-order Runge–Kutta integration

scheme (Hirsch, 1988). The new circulation, Gv; of the vortex corresponding to this new position, is calculated using the

Kutta condition (Eq. (3)). In this model the circulation of the vortex vanishes when the acoustic flow is zero. At the next

time step a new vortex is shed. As an example the path of a single point vortex and its circulation is plotted in Fig. 5 for

a typical case, where spurious counts were measured.

To calculate the torque on the turbine, the force on each blade is calculated numerically by integration of the pressure

along the plate,

F ¼
I

p dS ¼
Z
without edge

p dS þ
Z
edge

p dS; ð4Þ

where p is the pressure (Pa) and S the surface area (m2). The pressure, p; in the first term is solved using the unsteady

Bernoulli equation,

r
@F
@t

þ
1

2
ru2 þ p ¼ constant: ð5Þ

The integration is carried out by means of the trapezium method. For the second term, around the singularity, a

quasi-steady approximation is used (Milne-Thomson, 1952 and Appendix A). As input for this theory, a Taylor

expansion of F around the point x ¼ �A is used.

2.2. Limit of the theory for SrL ¼ Srd ðL=dÞ >> 1

The limit of this theoretical model is considered next for SrL >> 1: In such a case the effect of the vortex on the global
flow around the blade is negligible except for the flow near the sharp trailing edge. A great advantage of this simplified

model is that an explicit expression is obtained for the aerodynamic torque on the rotor without the need to determine

the details of the vortex path. As explained above, the key of this model is that it is assumed that there is only flow

separation around the sharp trailing edge of the flat plate. As a consequence, there is a finite velocity at this sharp edge

and therefore no edge force. At the leading, rounded edge there is no flow separation and the velocity becomes infinite

and this results in an edge force (Fig. 6).

Because the velocity becomes infinitely large at the edge, convective flow acceleration is larger than the local time-

dependent flow acceleration. A quasi-steady approximation can be used. The edge force is directed along the plate and

can be calculated with potential flow theory (Milne-Thomson, 1952). The magnitude, Fe; of the edge force is

Fe ¼ �prSplateU
2
ac sin

2 a; ð6Þ

where Fe is the edge force (N), Splate is the surface area of the plate (m
2), Uac is the acoustic velocity amplitude (m s�1)

and a is the angle between the blades and the direction of the acoustical flow. The flow separation generates a vortex

close to the sharp edge. As explained above, this vortex is assumed to have solely the effect of removing the pressure

singularity and the consequent edge force. Flow separation also implies that the boundary layer vorticity is injected into

the main flow. This vorticity is assumed to be of small magnitude and confined to a region close to the edge; therefore,

there will be no significant change of the global circulation for the flow around the flat plate. If the flat plate is placed in

a parallel harmonic oscillating flow, the flow will alternate between the left and right situation in Fig. 6. The force

perpendicular to the flat plate will also alternate harmonically. If a harmonically oscillating flow is imposed, the average

of the normal force taken over one oscillating period will be zero. Consequently, the resultant averaged force for the flat

plate over one acoustic period can be simply calculated using the edge force. With this edge force, it is possible to

calculate the average torque, Tav; on the blades:

Tav ¼
prravSplate

8
U2

ac sin
3 a; ð7Þ

where rav is the average radius (m) at which the force is applied on the blade.

2.3. Comparison models

In Fig. 7 the relative difference, ðT1 � T2Þ=T2 between the critical torque, T1; calculated with the point vortex model

for SrL ¼ Oð1Þ and the critical torque, T2; calculated with the model for the limit case SrL >> 1 is plotted against the

reciprocal Strouhal number, 1=SrL ¼ Uac=fL; based on the length of the plate. For typical Strouhal numbers as
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encountered in our experiments (4oSrLr20) the difference between the two theories is less than 30% which is

negligible compared to the difference between theory and experiments.

3. Experimental set-up

Acoustical oscillations in a closed side branch can either be induced by a resonant response to compressor pulsations

or by flow-induced pulsations due to vortex shedding. In the experimental set-up, these flow oscillations are induced

using a loudspeaker mounted within a closed pipe segment (Fig. 8).

Two set-ups were used (Mulder, 2000), a small set-up at atmospheric pressure with a pipe diameter D ¼ 100 mm, and

a large set-up, with a pipe diameter D ¼ 300 mm and the possibility to vary the mean static pressure from 1 to 8 bar. In

the small set-up, the gas turbine meter (Instromet G250) is placed between two PVC pipes with diameter D ¼ 100 mm

and length Lp1 ¼ Lp2 ¼ 1:8m: A loudspeaker (Visaton W100S) is placed at the end of the pipe, while the other end is

closed by a rigid plate. Four dynamical piezo-electric pressure transducers (Kistler type 7031) are placed at positions

distributed along the pipes. The pressure transducers are connected to charge amplifiers (Br .uel & Kjaer type 2635). In

the large set-up, the gas turbine meter (Instromet G2500) is connected with two pipes with diameter D ¼ 300 mm and

lengths of Lp1 ¼ 6 m and Lp2 ¼ 2 m: The end of each pipe is sealed to be able to support a pressure up to 8 bar above

atmospheric pressure. In the long pipe, Lp1; a loudspeaker (Peerless XLS10) is placed. The short pipe, Lp2; is closed by
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means of a flat and rigid plate. The position of the loudspeaker can be changed, making it possible to modify the

resonance frequency of the system. Nine holes are made for placing dynamical pressure transducers (Kistler type 7031)

along the pipes, allowing an optimisation of the choice of the position of the four available transducers.

To obtain a harmonic voltage signal, a signal generator (LMS Roadrunner) is connected to a power amplifier (Br .uel

& Kjaer type 2706) from which the signal is applied to the loudspeaker. The amplitude and the frequency can be

adjusted separately. For the acquisition of all the signals, a 12-channel data acquisition device (LMS Roadrunner

compact) is used. The rotational frequency of the blades is measured using standard Instromet measuring equipment.

The pressure transducers are used to measure the acoustic pressure amplitude. As the acoustic waves in the pipe are

plane waves, the pulsation pressure amplitude, p0ðx; tÞ; depends only on the axis parallel to the pipe. This can be

assumed if the frequency, f ; of the pulsations is much smaller than the cut-off frequency, fc: The pressure amplitude
data is used to calculate the acoustic velocity amplitude, Uac; if a full reflection at the closed end wall is assumed and

thermal and friction losses in the pipe are neglected. The acoustic velocity at a distance x from the end of the wall is

calculated using the equation

juðxÞj ¼
jp0j
r0c0

sin kx

cos kðxmÞ
; ð8Þ

where juj is the acoustic velocity amplitude (m s�1), jp0j is the acoustic pressure amplitude measured at a distance xm

(Pa), r0 is the density of the propagation medium at ambient temperature (kg m�3), c0E344 m s�1 is the acoustical wave

propagation velocity in air at ambient temperature (m s�1), k is the wave number (m�1) and xm is the distance between

the end wall of the pipe and the pressure transducer (m). To obtain the acoustic velocity, Uac; at the blades of the
turbine flow meter, incompressibility is assumed and from the mass conservation equation the following is obtained:

Uac ¼ juðLp2Þj
Sm

St

; ð9Þ

where Uac is the amplitude of the acoustic velocity at the turbine blades (m s�1), Lp2 is the pipe length (m) (see Fig. 8),

Sm ¼ pD2=4 is the surface area of the pipe where the measurement is taken (m2) and St is the cross-sectional surface

area of the turbine flow meter (m2). The flow through the turbine meter can be assumed incompressible, because the

length of the turbine meter, Lt; is very small compared to the wave length, l (Ltool). The frontal area of the blades of
the turbine meter, which is about 10% of the internal area of the turbine meter, is neglected in calculating St: We used

the values St ¼ 5:7� 10�3 m2 for the small meter (Instrometer G250) and St ¼ 4:9� 10�2 m2 for the large meter

(Instromet G2500). Measurements of Uac obtained from the four different pressure transducers agree with each other

within 10%.
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4. Experiments

4.1. Critical friction torque

Two different experiments are carried out to obtain the critical static torque above which rotation occurs: a dynamic

and a static experiments. The equation of motion for the turbine flow meter is

I
dO
dt

¼ Taer þ Tfr ; ð10Þ

where I is the moment of inertia of the rotor relative to its axis (kg m�2), O is the angular velocity (rad s�1), t the time

(s), Taer is the aerodynamic torque at the blades of the rotor (kg m
2s�2) and Tfr the total friction torque (kg m

2 s�2). The

aerodynamic torque is approximated in the previous section (see Eq. (7)).

The torque caused by the friction can be split into the contribution of air friction, Tair; on the rotor and in the torque
caused by the friction, Tbearing; at the bearing (the friction with the oil and the friction of the shaft). The friction of the

shaft can be divided in static friction or dynamic friction.

To obtain the torque of the dynamic friction, the rotor is accelerated by means of an acoustic field to a steady

velocity. When the loudspeaker is turned off, the angular frequency decay is registered and a fourth-order curve is fitted

through the data. Subsequently, the torque is calculated from the angular velocity using the relation in Eq. (10). The

aerodynamic torque, Taer is assumed to have a second-order dependency on the angular velocity (see Eq. (6)). The

friction torque of the oil at the bearing has a linear dependency on the rotational velocity . The friction with the shaft is

assumed to be constant. In the limit of vanishing rotational speed, the only contribution to the torque is the constant

dynamic friction of the rotor with the shaft. The value of this dynamic torque is found by taking this limit to be

approximately 6� 10�6 Nm for the small set-up and 9� 10�5 Nm for the large set-up.

The static friction torque is measured using a small piece of tape fixed at a known radius at the rotor. The tape

induces a torque on the rotor, which can be calculated from the weight and the position of the tape. The rotor is held

and released using a photograph shooter. With this method the critical static torque was found to be 5:6� 10�6 Nm for

the small set-up and 1:0� 10�4 Nm for the large apparatus. These critical static torques agree within the experimental

accuracy with the dynamic friction torques in the limit of zero rotational speed. Furthermore, these results agree with

the specifications of the manufacturer.

4.2. Critical acoustic velocity

Above a critical value of the amplitude of the acoustic velocity, Uac; spurious counts occur. This critical acoustic
velocity is measured, by keeping the acoustical excitation frequency, f ; constant, while increasing the amplitude slowly.
This can be done either manually or by using a special function on the signal generator. When the rotor starts to rotate,

the acoustic velocity is determined from the acoustic pressure amplitude, p0; as explained in the previous section. These

results show considerable deviations for different frequencies, but also for two consecutive measurements at the same

frequencies. The standard deviation is approximately 20% of the mean value. Probable reasons for these deviations can

be the varying static friction torque caused by the unevenly distributed oil and local roughness of the solid surfaces in

the bearing. It is also possible that they are caused by changes that occur in flow configuration or by difficulties in

determination of the threshold of rotation from the experimental data. The mean critical acoustic velocities are

determined for the small and the large set-ups at their first and third resonance mode. For the small set-up these

frequencies are f1 ¼ 60Hz and f3 ¼ 210 Hz; and for the large set-up f1 ¼ 30 Hz and f3 ¼ 100Hz: The critical acoustic
velocity amplitude, Uac; for the large set-up is measured at four different static pressures, 1, 2, 4 and 8 bar.

5. Results

The results of the experiments can now be compared to the calculated data and to the value of the critical pressure

amplitudes in field conditions.

Fig. 9 shows the critical Strouhal number, Srd ¼ df =Uac; based on the blade thickness, at which the rotation starts,

plotted against the Reynolds number, based on the blade length. The critical Strouhal number is of order unity, which

corresponds to our qualitative model of the effect of the blade thickness. When the vortex remains at distances from the

edge smaller than the blade thickness, it is not expected that this affects the flow. Hence there is no rotation for Srd >> 1:
A significant dependency of Srd on the Reynolds number can be observed, which we cannot explain with the used

model. We did actually not expect such a dependency.
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In Fig. 10, the ratio of the measured critical static torque and the predicted torque calculated using the limit

case model (SrL >> 1) for both set-ups is plotted against the Reynolds number, with the length of the blade

as the characteristic length. For the small set-up, the calculated critical torque is two times the measured critical

torque for the first resonance mode and five times the measured critical torque for the third mode. For the

large set-up, the calculated critical torque is 20% lower than measured for the first mode and 4–5 times larger

for the third mode. It would be interesting to investigate whether those differences in behavior for the first and third

acoustical mode of the pipe are related to difference in mechanical vibration level. Such vibrations could affect the

critical torque.

Using the results, the critical torque can be estimated for field conditions of natural gas transportation with a static

pressure, p ¼ 60 bar ¼ 6� 106 Pa and a density of the natural gas, rg ¼ 14 kgm�3: The geometries of the pipe and of

the turbine flow meter are assumed to be similar to that of the large set-up. Using Eq. (7) the acoustical velocity, Uac; is
calculated, at which the critical static torque is reached and spurious counts occur. This is found to be UacE7�
10�2 m s�1: This corresponds to acoustical pressure amplitudes of the order of p0 ¼ r0c0UacE103 Pa with for natural

gas c0E390 m s�1: In field conditions, measurements show spurious counts with acoustic pressure amplitudes of 4�
103 Pa (Riezebos et al., 2001). This shows that the model can provide a fair indication for conditions for the occurrence

of spurious counts.
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6. Conclusions

Representing the rotor blade by a flat plate and the flow separation at the sharp edge of the blade by a point vortex, a

model is obtained allowing to predict the aerodynamic torque on the rotor. A simplified model is proposed for high

Strouhal number (SrL >> 1) which provides an explicit algebraic expression without the need to determine the details of

the flow. Comparison between the two models indicates that they are equivalent within the accuracy of the performed

experiments. The results show that the thickness of the plate is an important factor for occurrence of spurious counts.

The presence of a thick trailing edge on turbine blades increases the critical acoustical pulsation amplitude above which

spurious counts appear. The model provides a prediction of the order of magnitude of the critical torque, and can be

used to determine typical conditions for the occurrence of spurious counts in field conditions. In view of its simplicity,

the simplified model for the limit case, SrL >> 1; is an useful engineering tool in the prediction of the occurrence of

spurious counts.
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Appendix A

Using the transformation of Joukowski (see Eq. (1)), the value of dx=dz can be calculated close to the leading

(singular) edge,

lim
z-�2A

dx
dz

� �
¼ lim

z-�2A

1

2
þ

z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � 2AÞðz þ 2AÞ

p
" #

¼ lim
z-�2A

i
ffiffiffiffi
A

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z þ 2A

p ; ðA:1Þ

where A is the radius of the circle in the x-plane. Because near the edge (z-� 2A) becomes very large and the second

term becomes the dominant term, Eq. (A.1) is obtained. The potential of the flow is given by Eq. (2). With this equation

and the Kutta condition on the trailing edge, z ¼ 2A (see Eq. (3)) the circulation, Gv; can be found

Gv ¼ 4pUac sin a
AðA � xvÞðx

�
v � AÞ

xvx
�
v � A2

; ðA:2Þ

where Uac is the acoustic oscillation amplitude, a is the incidence angle of the flow and xv is the position of the vortex in

the transformed plane. Using the flow potential, F and the circulation Gv; dF=dx close to the leading edge can be

calculated:

dF
dx

� �
x-�A

¼Uace
�ia � Uace

ia �
iGv

2p
1

�A � xv

þ
x�v

�Ax�v � A2

� �

¼ � 2iUac sin a 1þ
ðA � xvÞðA � x�v Þ
ðA þ xvÞðA þ x�v Þ

� �
: ðA:3Þ

By combining Eqs. (A.1) and (A.3) it follows that

dF
dz

� �
z-�2A

¼
dF
dx

� �
x-�A

dx
dz

� �
z-�2A

¼Uac

ffiffiffiffi
A

p
sina 1þ

ðA � xvÞðA � x�v Þ
ðA þ xvÞðA þ x�v Þ

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z þ 2A
p : ðA:4Þ

The force on the edge can be found by evaluating Blasius theorema around the closed contour e;

Fx � iFy ¼
ir
2
lim
e-0

I
e

dFðzÞ
dz

� �2

dz; ðA:5Þ
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where Fx represents the force parallel to the plate (the edge force) and Fy represents the force perpendicular to the plate.

Using the Cauchy integral theorem, the force becomes

Fx ¼ Fe ¼ � prU2
acAsin2a 1þ

ðA � xvÞðA � x�v Þ
ðA þ xvÞðA þ x�v Þ

� �2

¼ � 4prU2
acAsin2a

A2 þ xvx
�
v

ðA þ xvÞðA þ x�v Þ

� �2

: ðA:6Þ
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